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O(3) shift operators and the groups 0(4), O(3, 1) and E(3) 

J W B Hughes 
Department of Applied Mathematics, Queen Mary College, Mile End Road, London 
El 4NS, UK 

MS received 17 November 1972 

Abstract, Operators shifting the eigenvalues of the O(3) Casimir are constructed from the 
members of a three-dimensional tensor representation of 0(3), and used to give a unified 
derivation of irreducible representations of the groups 0(4), 0 ( 3 , 1 )  and the euclidean 
group E(3). 

1. Introduction 

In two previous papers (Hughes 1973a, b) the O(3) content of irreducible representations 
of the group SU(3) was analysed using two pairs of operators which shift the value of 1 
(where 1(I+ 1) is the eigenvalue of the O(3) Casimir L 2 )  by f 1 and +2.  This analysis 
was rather involved due to the occurrence of I degeneracies, so two simplifications were 
introduced, the first being the restriction to states of zero m (the eigenvalue of the O(3) 
generator l o ) ,  and the second being the omission of proofs of previously known results 
concerning the 1 content of the representations. 

An analogous problem, which is sufficiently easy to avoid having to make such 
simplifications, is the analysis of irreducible representations of the groups 0(4), O(3, 1) 
and E(3) with respect to their O(3) subgroup. These groups have the common property 
that their generators, apart from those of 0(3), form a three-dimensional tensor repre- 
sentation of 0 ( 3 ) ,  and differ only in the hermiticity conditions and mutual commutation 
relations of the additional generators. In view of this similarity one should expect the 
analysis of their irreducible representations to be amenable to a unified treatment, and 
this can be given using shift operators similar to those used for SU(3). In fact for these 
groups only one pair of such operators exist, changing 1 by & 1, and consequently no I 
degeneracies can arise. It is this property which makes their treatment so much easier 
than that of SU(3). 

The purpose of this paper is therefore to give this unified treatment and to thereby 
further illustrate the usefulness of the 1 shift operators for such problems. No simplifi- 
cations such as were employed for SU(3) will need to be made, and the m dependence 
of matrix elements of the shift operators will be explicitly exhibited. Most of the results 
obtained, apart from those for E(3), will not be new, the case of O(4) being very well 
known (eg Biedenharn 1961), O(3,l) having been treated by many authors, notably 
Naimark (1964). The novel feature of this paper is in the method rather than in the 
actual results obtained. 

When discussing properties common to the groups 0(4), O(3, 1) and E(3) we shall 
denote their Lie algebras by G(g, h),  where g and h are parameters depending on, respec- 
tively, the hermiticity conditions and mutual commutation relations of the O(3) tensor 
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representation operators. In Q 2 we shall write down the shift operators 0: ' for G(g,  h)  
and discuss their hermiticity properties. Expressions will be given for the L2 commuting 
products O:;,O1'.' in terms of the group invariants, and these used to obtain their 
matrix elements in terms of g, h and the eigenvalues of the invariants. In 0 3 we use the 
properties of 0: to derive the unitary irreducible representations of O(4) and O(3, l) ,  
and analyse them with respect to the O(3) subgroup. A similar analysis is given in 0 4 
for E(3). 

2. The operators 0:' 

The groups 0(4), O(3,l)  and E(3) are all generated by six operators of which three, lo 
and I ,  , generate the common O(3) subgroup. The remaining generators q 4 ,  p = 0, f 1, 
form a three-dimensional irreducible tensor representation of 0(3) ,  that IS, they have 
commutators with lo and I ,  of the form 

The three groups differ in the hermiticity properties and mutual commutation relations 
of the qp ,  but since these are not relevant to the construction of the O,?', we shall not 
specify them yet. 

One may easily verify, using (l), that the operators 

x = -&~2~0qo-1+4-1-1-4+1) (2) 

y = hL2 + &4 + 14- 1 + 4-  14+ 1 + 4 3 >  (3) 

where h is an arbitrary number and L2 = 1,lL +Io(lo-  1) is the O(3) Casimir, are both 
O(3) scalars. We therefore label the states upon which our shift operators will operate 
by the eigenvalues of these operators, together with those of L2 and l o .  The states will 
therefore be denoted lyxlm) where y and x will eventually label the irreducible representa- 
tions of 0(4), etc. 

The matrix elements of the qp can easily be shown (Edmonds 1957) to be given in 
terms of the reduced matrix elements (y,  x ;  ll\qlly', x';  1')  by the formula 

where(-f, 

states must therefore have the form 

~ . ) i s a 3 - j s y m b o l a n d t + ,  = t o  = -l,t-.l = 1. 
We now obtain 1 shift operators which leave m unchanged and whose action on the 

W, x ; 1, m> a I Y ' ,  x' ; 1, m>. 

In fact 0, will not change y and x, but this need not be assumed yet. Ol must clearly 
commute with I ,  and have a commutator with L2 of the form 

[LZ, O,] = 220,.  ( 5 )  

We require Ol  to contain the q,, to only first order ; the most general such operator which 
also commutes with 1, is 

0, = aq,+bl+q-,+cl-q+,. 
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The calculation of the values of A and the corresponding 0, proceeds in an exactly 
analogous manner to that employed by Hughes (1973a) for the case of SU(3). The values 
of I obtained are 0, 1+ 1 and - 1. The corresponding 0: turns out in fact to be the 
operator X, and 0: ' are given by 

1 
0: 1 = - --(I2 - 1; - l)q, +# - 1, + l) l+q- ' - % I +  1, + 1)Z- q+ ' (6) 

J 2  

(7) 
1 

0; = - -(Z2 + 21 - I;)q, -%l+ 1o)l.q- ' + 31- lo)l-q+ 1 .  
J 2  

These last two operators are the same, up to an overall multiplicative constant, as 
operators constructed by Stone (1956) for the particular case of O(4). 

Some properties of the 0: ' should be noted. Firstly, whereas 0: ' shift the 1 values 
of kets by k 1, respectively, they do not act as "pure' shift operators on bras; instead 
they yield linear combinations of bras of different 1 values, that is, they are 'right handed' 
shift operators. Their hermitian conjugates, on the other hand, will be 'left handed' 
shift operators. Secondly, 0: ' and 0; ' are interchanged by the replacement of 1 by 
- ( I +  1). A detailed discussion of these properties has been given for the shift operators 
in the case of SU(3) (Hughes 1973a) and this is equally applicable to the operators 
considered here. 

Having shown that the existence of 0: ' does not depend on the hermiticity pro- 
perties of the qp,  and in order to proceed further, we impose the conditions q& = gq,  
and q$ = gq- where g = k 1. Taking the hermitian conjugate of (6) yields 

1 (0: ')t = g - -(P +21- 1; + l)q, - & I +  1, + l ) l + q -  1 +&l- 1, + l)l-q+ 1 i ;2 

showing that (0; ')t d 0;;'. Equations (2) and (3), on the other hand, show that Y is 
always hermitian whereas X t  = g X .  

The usefulness of the shift operators relies heavily upon the knowledge of the constant 
al appearing in the equation 

(9) (Y ' ,  x' ; 1, No: ')tlv, x ; I +  1, m> = a&', x' ; 1, mlon: ,,ly, x ;  I +  1, m), 

and this may be calculated in a manner completely analogous to that used by Hughes 
(1973a) for the case of SU(3). The result is 

Using (9) and (10) we may relate the matrix elements of the L2 commuting operators 
O:,l,O: to those of 0: ', obtaining 

(Y, x;  1, mIO,',O: 'Iy, x;  1, m> 
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The sums over y' and x' are needed in case the 0: ' connect states of differing y and x 
values. One may also prove, independently of the hermiticity conditions, that 

E ( y , x ;  I ,  m10,',0: ' l y , x ;  I ,  m )  = 

and finally it can be shown that the O,?,O,? ' are hermitian operators. 

relations for the q,, of the form 

( y ' ,  x ' ;  I f  1, m(O:'O,',ly', x ' ;  E +  1, m )  (13) 
?,X $,X' 

We now close the set Ii, q,, to form a Lie algebra by assuming mutual commutation 

Any different choice for these commutators which is also consistent with the Jacobi 
identity can be shown, by replacing the q,, by suitable linear combinations of the Ii and 
q,, to be equivalent to (14) for some value of h. Also, there are only three basically 
different cases, depending on whether h = 0, h < 0, or h > 0. However, the case h < 0 
with g = i 1 is equivalent to the case h > 0 with g = f 1, so we need consider only 
h = 0 and h > 0. Finally, all cases with h > 0 can be made equivalent to the case h = 1 
by a suitable renormalization of the q,, so we need consider only h = 0 and h = 1. 
There are therefore three essentially different Lie algebras formed from the Ii, q,, , which 
we denote by G(g, h). G(l, 1) and G( - 1, 1) generate O(4) and O(3, l), respectively, and 
G( 1 , O )  generates E(3). The problem of classifying unitary irreducible representations of 
these groups will be replaced by the equivalent one of classifying hermitian irreducible 
representations of the appropriate G(g, h). 

It is now easy to show that, providing the h's in (3) and (14) are identified, X and Y 
commute with the q,  as well as Ii, and hence also with the 0: '. They are therefore the 
invariants of G(g, h )  and their eigenvalues label the irreducible representation. y is 
always real whereas x is real for g = 1 and imaginary for g = - 1. 

Clearly O:,l,O: ' also commute with X and Y, that is, they commute with all the O(3) 
scalar operators which may be constructed from the q, and Ii, and it is here that the 
groups generated by G(g, h)differ from SU(3). As a result of this property no I degeneracy 
arises for G(g, h), for the O?,llO:' act diagonally on ly, x ;  I ,  m )  so that the result of 
acting on 0: ' ly, x ;  I ,  m )  with O1yl is a state proportional to ly,  x ;  1, m).  For SU(3) this 
was not in general the case and the possibility of I degeneracy arose (Hughes 1973a, b). 

O~- ' ,O; ' l y ,x ;  I ,m) = ( 1 2 - m 2 ) { ( y + h ) I Z - h 1 4 - x 2 } l y ,  x ;  l ,m) ,  (1 5 )  

O,',O,+ ' ly, x ;  I ,  m )  = ( ( 1 +  -mZ){ (y+h) ( l+  -h(l+ 1)4-x2jly,  x ;  I ,  m ) .  (16) 

One may easily show that 

Whereas for the far more complicated case of SU(3) we made the simplification that the 
shift operators act on states of zero m values, here the m dependence of the eigenvalues 
of 0~~10:1 is shown explicitly and seen, much in the spirit of the Wigner-Eckart 
theorem, to factor out from the x and y dependent terms. The internal structure of O(3) 
therefore separates out and so does not complicate the problem of determining the I 
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content of representations of G(g, h).  The (1' - m 2 )  term in (15) simply guarantees that 
the process of obtaining, by successive applications of 0; ' to ly, x ;  I ,  m ) ,  states of 
descending I values can never yield states with I < Iml. 

Equations (11) can now be used to obtain the actions of 0;' on ly, x ;  I ,  m )  ; for 
instance 

I(y,x;1+1,mIO:'Iy,x;I,m)I2 = cr,(y,~;I,mlO,'~O:'Iy,x; Lm).  

The phases of ly, x; I ,  m )  can be chosen in a self-consistent manner so that 

( Y ,  x ;  I +  1, mlo: 'IY, x ;  1, m> 

is real and positive, and so using (16) we obtain 

0: ' IY, x ; 1, m> 

g(2I+ 1){(l+1)2-m'} { ( y + h ) ( l + 1 ) 2 - h ( l + 1 ) 4 - x Z }  
21+3 ) ly,x;1+1,m). 

(17) 
= (  

Using 

(y,x; I +  1, mIO:'Iy, x ;  Lm)* 

= ( Y ,  x ; 1, MI (0: ')+lu, x ; 1 + 1, m> 

= aky ,  x ; 1, mIo;+', ly, x ;  1+ 1, m> 
then gives 

O;'l~,x;I,m) 

g(21+ l ) ( I Z - m 2 ) { ( y + h ) 1 2 - h 1 4 - x 2 }  
ly, x ;  I -  1, m>. = g (  21- 1 

The reduced matrix elements of the qr can now be obtained using the matrix elements 
of X ,  0: ' and 0; ' ; for instance 

x = ( y ,  x ; 1, mlxly, x ; I ,  m )  

which, on using ( 2 )  and (4), can be expressed in terms of ( y ,  x ;  lllqlly, x ;  1). This yields 

In a similar manner (7) and (18), and (6) and (17) yield, respectively, 

2g{ ( y  + h)12 - h14 - x2) 
1 (Y,  x; Illy, x ;  I -  1) = - 

Finally, using (4), one may calculate all the non-vanishing matrix elements of the q r .  
Thus once the irreducible representations of G(g, h)  are known, their analyses with 
respect to O(3) are given by the results of this section. It remains, therefore, to classify 
these representations, that is, to obtain the values of y and x and the corresponding 
range of I ,  and this will be done in the following two sections. 
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3. Classification of the irreducible representations 

We now consider the classification of hermitian irreducible representations of G(g, h). 
There are two conditions which must be satisfied, firstly the irreducibility condition 
which requires the representation space to contain no invariant subspaces, and secondly 
the hermiticity conditions given in 8 2. Also the representations of G(g, h)  must reduce 
to direct sums of irreducible representations of the Lie algebra of O(3) on restriction, 
which requires the values of x and y to be consistent with 1 taking on a range of half- 
integral values. 

The irreducibility condition is equivalent to the requirement that any basis vector 
ly, x ;  I ,  m) for the representation space can be obtained from any other basis vector by 
the successive application of I ,  and 0: '. However, the I, act only within irreducible 
representation spaces of 0(3), so since we are interested only in how these subspaces 
are interconnected we may restrict our considerations to 0: which will be used to 
derive the range of I for given y and x. 

Now if for a given irreducible representation of G(g, h) I has an upper bound 1, we 
must have 0; ' Iy ,  x ;  j ,  m )  = 0. Hence we also have O,l,O; ' l y ,  x ; 1, m) = 0, so i must 
be a zero of the eigenvalue of O;.,O;'. Comparing (16) with (17) one sees that 
0; ' ly, x ; 1, m) vanishes whenever Oi+',O; ' ly, x ; 1, m) does, so the above condition is 
sufficient as well as necessary. By a similar argument the lower bound I is a zero of the 
eigenvalue of OT-', 0; '. 

The hermiticity conditions are (i) that y and x2  be real and x 2 0 or < 0 according 
as g > 0 or <O, respectively, and (ii) that the eigenvalues of OlylO: ' be 3 0  or GO, 
again according as g > 0 or g < 0. It may turn out that (ii) is satisfied for all I only if 
1 or 1 exist and hence may further restrict the values of y and x so that the eigenvalues of 
Ol$',0: ' vanish for some half-integral value of 1. Now the m dependent factors in (15) 
and (16) are always positive and serve only to guarantee that I never goes below m ;  
hence if we define 

(22)  

we see that conditions (ii) require that, for all I 3 0, A and B 3 0 if g > 0, and A and 
B < 0 if g < 0. 

In the remainder of this section we use these conditions to analyse G(g, l), returning 
to G(1,O) in 6 4. Instead of y and x we shall use the variables I and v defined by 

A = (y+h)( i+ i )2-h(1+1)4-~2,  B = (y + h)P - h14 - x2 

y = 1 2 + v 2 - l ,  x = A V .  (23) 

A = { ~ 2 - ( 1 + 1 ) 2 ) { ( 1 + 1 ) 2 - v ~ } ,  B = ( A 2 - P ) ( P - v 2 ) .  (24) 

Equations (22) with h = 1 then factorize as follows : 

We observe that A and B are symmetric in I' and v2.  Also, since y and x2 are real, 
A 2  and v 2  are either both real or complex conjugates. We now consider the case g = 1, 
corresponding to the group O(4) (and also, of course, O(3) x O(3) and SU(2) x SU(2)), 
and treat the case g = - 1 later .on in this section. 

3.1. Irreducible representations of G(1, I )  

Here x2 3 0, which is automatically satisfied if 1' and v 2  are complex conjugates ; if 
A 2  and v 2  are real, they must have the same sign. We must also have A Z 0 and B Z 0 
for all I ,  and it is easy to check that neither of these can hold if ,I2 and v2 are complex 
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conjugates. When they are real, the above conditions hold providing either I 2  2 ( I  + 1)2 
and 1' 2 v2 for all I ,  or v2 2 ( I  + 1)2 and 1' 2 A 2  for all 1. From the complete symmetry 
between A 2  and v2, the two possibilities are equivalent so we choose the second as the 
condition to be satisfied by A 2  and v2. This implies that v2 > 0, hence we also have 
A 2  2 0. 

v and A are therefore both real ; now the only place where their signs enter is in the 
eigenvalue x = AV of X, which may have either of the values f J ( A 2 v 2 ) .  No loss of gener- 
ality is therefore lost by requiring I 2 0, so that the two values of x will correspond to 
the choices of sign for v. If A = 0 then also x = 0, so in this case the sign of v is irrelevant 
and only one case arises. 

Since ( I +  1)2 < v 2  for all I, I must have an upper bound 1, which is a zero of O,',O: ', 
and therefore of A ;  hence 1 = IvI - 1. Also in order that A 2  < 1' for all I ,  1 must have a 
lower bound 1 which is a zero of O:-',O; l ,  and therefore of B ;  hence I = A. A and IvI 
must therefore be half-integral numbers such that IvI - I  is a positive integer. 

To summarize, the irreducible hermitian representations of G( 1, l )  are of the type 
D('.") where I = O,+, 1,&. . . and v = +(A+ l), +-(A+2), +-(A+3),  . . . , and the range of 
I is 1 = A, I +  1,. . . , JvI - 1. D(',") is clearly finite dimensional with dimension v 2  - I 2 .  
D(',') and D(',- ') are mutually contragredient, whereas D(',") and D('*- ') are equivalent, 
that is, D''.') is self-contragredient. As for the case of SU(3), therefore, contragredient 
representations contain precisely the same I content. 

3.2. Irreducible representations of G( - 1 , l )  

Here x2 < 0 which precludes v 2  and A 2  being complex conjugates, so they must be real 
and have opposite signs. The symmetry between v2 and A 2  enables us to choose A 2  2- 0 
and v2 < 0, and taking 1 2 0 again leads to two cases (except when A = 0) depending 
on the sign of iv. We must also have, for all I ,  A < 0 and B < 0, and this leads to various 
possibilities : (i) A 2  2 ( I  + 1)2 and v2 2 ( I  + 1)2 for all I ; this implies that v2 > 0 and must 
be excluded ; (ii) A 2  < 1 2 ,  v2 < l 2  for all I ;  the second inequality is automatically satisfied 
and so I has no upper bound. The first inequality implies that I is bounded below by A, 
which must therefore be half integral. We therefore obtain the so-called principal series 
of irreducible representations, which we denote by Df.'), for which A = 0, i, 1, i, . . . , 
Re v = 0, -CO < Im v < CO, and I takes on the range of values I = 1, A+ 1,A+2,. . . . 
Of**  ") are contragredient representations again, and D:'*") is self-contragredient. (iii) We 
consider the case v = 0 more carefully. Here the inequalities to be satisfied become 
A = { I 2  - ( I  + 1)2) ( I  + 1)2 < 0 and B = ( I 2  - l 2 ) I2  < 0. Suppose the minimum value of 
I is zero ; then in order that A < 0 for all I ,  we must have A 2  < 1. The case A2 < 0 and 
v = 0 is included in the principal series of representations where the roles of I and v 
are interchanged, so we need consider only 0 < A 2  < 1. Also, when I = 0, although 
( A 2  - 1') 2 0, the factor l 2  guarantees that B still satisfies B < 0. Hence we get hermitian 
irreducible representations when v = 0,O < I 2  < 1 and I = 0. There are two cases to 
be considered here : (a )  0 < A 2  < 1. In this case A never vanishes and so 1 has no upper 
bound. We obtain in this case the so-called supplementary series of representations, 
D!A*o), for which v = 0, Im I = 0 and 0 < Re I < 1, and I = 0, 1,2, .  . . . D!"') is self- 
contragredient. (b )  If A 2  = 1 and v = 0 then A < 0 and B < 0 are satiified either if I is 
bounded below by I and has no upper bound-this case is already included in the 
principal series of representations-or if I is bounded below by 0. In this case I = 0 is 
a zero of both A and B so that I is also bounded above by 0. This case gives the trivial 
representation DY.') for which I = 1, v = 0 and I = 0. 
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The above cases exhaust all possible hermitian irreducible representations of G( - 1, 1) 
and yield, on exponentiation, all irreducible unitary representations of O(3, 1) and its 
cover group SL(2, C). The results obtained are completely equivalent to those obtained, 
for instance, by Naimark (1964). 

4. Irreducible representations of G(l, 0) 

We finally classify the hermitian irreducible representations of G( 1,0), which is the 
(non-semi-simple) Lie algebra of the group E(3) of rotations and translations in three 
dimensions. Since h = 0, 

A = y ( f +  1 ) 2 - x 2 ,  B = y12 -x’. ( 2 5 )  

Since g = 1, x and y are both real and A and B are non-negative. Writing y = p 2 ,  the 
conditions which must be satisfied become p2(1 + 1)’ - x2 2 0 and p 2 f 2  - x 2  2 0 for all 1. 
Since x2 2 0 and ( I  + > 0, the first inequality implies that p 2  2 0. We have two 
possible cases: (i) p 2  > 0. In this case both the above inequalities are satisfied if 
1’ 2 .’/p2 for all I .  The sign of p is irrelevant and we choose p > 0, so that 1 > /xJ/p 
for all 1. Ixl/p must therefore be the minimum value of I ,  and is therefore half integral. 
Clearly I has no upper bound, so the irreducible representation is infinite dimensional. 
We therefore obtain the representations WX) for which Im p = 0,O < Re p < x, and 
x = +p(O,$,  1,$, . . .), and I takes on the range of values I = Ix/ /p ,  Ixl/(p+ l), 
Ixl/(p+2), . . . ; D(P,fx) are clearly contragredient representations. (ii) p = 0. Here A ,  
B 2 0 can be satisfied only if x2 = 0, so that in fact A and Bare both zero. This implies 
not only that 1 possesses an upper and a lower bound, but also that these bounds are 
equal. Hence only one value of 1 occurs, which may be either integral or half integral. 
These representations are all self-contragredient and finite dimensional. (Note that 
finite dimensional hermitian irreducible representations of non-compact Lie algebras 
are not excluded provided the Lie algebra is not semi-simple, so no contradiction occurs 
here.) Using (19H21) we see that for these representations all matrix elements of the q,, 
vanish ; they are therefore just the irreducible representations of the Lie algebra of O(3). 

5. Conclusions 

We summarize the advantages of the methods used in this paper over alternative 
approaches. (i) Three classes of groups can be analysed by a single unified method ; 
(ii) no specific realizations of the representation spaces were employed ; (iii) the analysis 
of representations of O(3,l) was obtained rather more directly than by methods not 
employing the shift operators 0: ; (iv) finally, the existence of the 0: was shown to be 
independent of the hermiticity properties and mutual commutation relations of the 4u. 
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